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Abstract

Stationary forced convection in a rectangular duct is investigated in the case of slug ¯ow by taking into account

the e�ect of viscous dissipation. Axially-varying heat ¯uxes are prescribed on the four duct walls. Under the
assumption that the axial heat conduction in the ¯uid is negligible, an analytical solution for the thermal entrance
region is obtained by employing a superposition method. More precisely, the superposition method allows one to
reduce the three-dimensional boundary value problem to a two-dimensional problem which is solved by the Laplace

transform technique. The dimensionless temperature and the axially local Nusselt number are determined. Special
attention is devoted to the eight fundamental boundary conditions of axially uniform wall heat ¯uxes and to the
case of a peripherally uniform wall heat ¯ux which undergoes an exponential axial variation. # 1999 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Several analyses of forced convection in rectangular

ducts are available in the literature. The interest

deserved to heat transfer in rectangular ducts as

well as, in general, in noncircular ducts is primarily

due to the applications in the ®eld of compact heat

exchangers. The most important investigations avail-

able in the literature on convection in rectangular

ducts have been reviewed by Shah and London [1],

Shah and Bhatti [2] and Hartnett and Kostic [3].

In the last decade, novel results in the ®eld of forced

convection in rectangular ducts have been obtained [4±

10]. A generalized integral transform technique has

been employed to analyze the thermal entrance region

for laminar forced convection, in the case of a uniform

wall temperature [4]. A numerical solution based on an

implicit ®nite-di�erence method has been obtained in

the hydrodynamically and thermally developed region

for power-law ¯uids, in the case of uniform heat ¯uxes

prescribed on the four walls of the duct [5]. By

employing a superposition method together with an

analytical solution in the case of slug ¯ow in a duct

with one uniformly heated wall and three adiabatic

walls, Gao and Hartnett [6] obtained a general ex-

pression of the fully developed Nusselt number for

eight di�erent combinations of uniformly heated and

adiabatic duct walls. A ®nite-di�erence scheme has
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been employed to investigate the thermally developing

laminar forced convection for rectangular ducts with

various aspect ratios and a peripherally and axially

uniform wall heat ¯ux [7]. With reference to the

boundary conditions considered by Gao and Hartnett

[6], Spiga and Morini [8,9] investigated the thermally

developing region in the case of slug ¯ow and evalu-

ated the thermal entrance lengths for several values of

the aspect ratio. The e�ect of viscous dissipation has

been taken into account in the analysis of laminar

forced convection in the hydrodynamically and ther-

mally developed region for a rectangular duct with an

Nomenclature

a1, a2, a3, a4 parameters such that a1 � a2 � uL2
y=a

and a3 � a4 � uL2
z=a (m)

a dimensionless parameter employed in

Eq. (55)
b1, b2, b3, b4 dimensionless parameters employed in

Eq. (44)

Br Brinkman number, Br � f0=q0
Dh hydraulic diameter, Dh � 2LyLz=�Ly �

Lz� (m)

f dimensionless function de®ned by Eq.
(53)

f1, f2, f3, f4 dimensionless functions of x
employed in Eqs. (4) and (5)

gj�x� dimensionless function of x,
gj�x� � fj�PeDhx�, for j � 1, 2, 3, 4

h1, h2, h3, h4 dimensionless functions employed in

Eqs. (15) and (16)
H dimensionless function de®ned by Eq.

(25)

K(x, y, z ) arbitrary function employed in Eq.
(32)

k thermal conductivity (W/m K)

L Laplace transform operator
Ly long-side length of the duct section

(m)
Lz short-side length of the duct section

(m)
L�th dimensionless thermal entrance length
M dimensionless function de®ned in Eq.

(58)
n positive integer
Nu Nusselt number de®ned by Eq. (38)

p dimensionless variable employed in
Eqs. (58)±(63)

Pe Peclet number, Pe � uDh=a
q0 reference wall heat ¯ux (W/m2)

qw, m peripherally averaged wall heat ¯ux
(W/m2)

RNu dimensionless parameter, RNu �
Nu=Nu1

Res residue of a complex function at a
pole

s Laplace transform variable
sn simple poles of function ~H�s,o�
t dimensionless variable employed in

Eqs. (17) and (18)
T temperature (K)
T0 inlet temperature (K)

T1, T2 functions de®ned by Eqs. (6)±(10) (K)
u uniform ¯uid velocity (m/s)
U Heaviside's unit step function

wj�t� dimensionless function of
t, wj�t� � fj�ajt�, for j � 1, 2, 3, 4

x, y, z Cartesian coordinates (m)
a thermal di�usivity (m2/s)

b aspect ratio, b � Lz=Ly

g dimensionless parameter, g �
2b=�1� b�

d Dirac's delta distribution
Dy dimensionless function, Dy � yÿ yb
z dimensionless z-coordinate, z � z=Ly

Z dimensionless y-coordinate, Z � y=Ly

y,y1,y2 dimensionless temperatures de®ned by
Eq. (28)

m dynamic viscosity (Pa s)
x dimensionless x-coordinate, x �

x=�DhPe�
r mass density (kg/m3)

F viscous dissipation function (sÿ2)
f0 parameter employed in Eq. (1)

(W/m2)

o dummy dimensionless variable

Superscripts
0 Laplace transformed function
' dummy integration variable

Subscripts
b bulk value
w, m peripherally averaged wall quantity

1 fully developed value
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axially uniform wall heat ¯ux and a peripherally uni-
form wall temperature [10].

Recently, a mathematical model has been proposed
in order to investigate the e�ect of viscous dissipation
for slug-¯ow forced convection in circular ducts [11].

Indeed, in the energy equation, the customary rep-
resentation of the viscous heating power in terms of
the spatial derivatives of the velocity ®eld becomes

singular in the case of slug ¯ow. As is easily veri®ed,
for slug ¯ow, the spatial derivatives of the velocity
®eld are zero at every internal point of the duct and

are in®nite at the wall. As a consequence, the power
generated per unit volume by viscous dissipation is dis-
tributed in the duct section as a Dirac's delta centered
next to the duct wall. The model developed in Ref. [11]

has been employed to evaluate the thermally develop-
ing temperature ®eld and the local Nusselt number for
slug ¯ow forced convection in a circular duct both in

the case of an arbitrary axially varying wall heat ¯ux
[12] and in the case of external convection with a ¯uid
having an axially varying reference temperature [13].

The aim of the present paper is to apply the math-
ematical model employed in Refs. [11±13] to the case
of a rectangular duct with slug ¯ow and non-negligible

viscous dissipation. Indeed, to the best of authors'
knowledge, the e�ect of viscous dissipation has been
always disregarded in previous analyses of slug-¯ow
forced convection in rectangular ducts. In the follow-

ing sections, an analytical solution of the energy bal-
ance equation is obtained for the thermal entrance
region of a rectangular duct with arbitrary axially

varying heat ¯uxes prescribed on the four duct walls.
The solution is determined by employing the Laplace
transform technique and a superposition method. A

special attention is devoted to the case of uniform heat
¯uxes on the four walls and to the case of a peripher-
ally uniform wall heat ¯ux which undergoes an expo-
nential axial variation.

2. Mathematical model

In this section, the boundary value problem for slug

¯ow forced convection in a rectangular duct is formu-
lated by taking into account the e�ect of viscous dissi-
pation. Then, the equations are solved by means of a
superposition method and of the Laplace transform

technique. Finally, the solution is expressed in a
dimensionless form.
Let us consider slug-¯ow forced convection within a

rectangular duct. The duct geometry and coordinate
system are represented in Fig. 1. The x-component of
the ¯uid velocity is uniform within the duct, and is

zero at the walls. The thermal properties of the ¯uid
are assumed to be independent of temperature.
Moreover, the axial heat conduction in the ¯uid is con-

sidered as negligible. Since the e�ect of viscosity is
restricted to an in®nitesimal layer adjacent to the duct

walls, the power generated per unit volume by viscous
dissipation can be expressed by a Dirac's delta distri-
bution centered next to the four duct walls. Therefore,

the viscous heating term in the energy balance
equation can be expressed as

mF�y,z� � f0

�
d�y� � d

ÿ
Ly ÿ y

�� d�z� � d�Lz ÿ z��, �1�
where d is the one-dimensional Dirac's delta distri-

bution and 2f0�Ly � Lz� is the power dissipated by vis-
cous heating per unit duct length. If the axial
distributions of heat ¯ux are prescribed on the four

duct walls and the inlet temperature is uniform with a
value T0, the temperature ®eld is determined by the
boundary value problem

@ 2T

@y2
� @

2T

@z2
� u

a
@T

@x
ÿ f0

k

�
d�y� � d

ÿ
Ly ÿ y

�� d�z�

� d�Lz ÿ z��, �2�

T�0,y,z� � T0, �3�

k
@T

@y

����
y�0
� ÿq0 f1�x�, k

@T

@y

����
y�Ly

� q0 f2�x�, �4�

k
@T

@z

����
z�0
� ÿq0 f3�x�, k

@T

@z

����
z�Lz

� q0 f4�x�, �5�

where, for every j � 1, 2, 3, 4, function fj�x� is such

that fj�0� � 0.
By employing a superposition method, the solution

of Eqs. (2)±(5) can be expressed as

T�x,y,z� � T0 � T1�x,y� � T2�x,z�, �6�

where T1�x,y� is the solution of

Fig. 1. Drawing of the duct and of the coordinate axes.
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@ 2T1

@y2
� u

a
@T1

@x
ÿ f0

k

�
d�y� � d

ÿ
Ly ÿ y

��
, �7�

T1�0,y� � 0, k
@T1

@y

����
y�0
� ÿq0 f1�x�,

k
@T1

@y

����
y�Ly

� q0 f2�x�,
�8�

and T2�x,z� is the solution of

@ 2T2

@z2
� u

a
@T2

@x
ÿ f0

k

�
d�z� � d�Lz ÿ z��, �9�

T2�0,z� � 0, k
@T2

@z

����
z�0
� ÿq0 f3�x�,

k
@T2

@z

����
z�Lz

� q0 f4�x�:
�10�

In analogy with the method described in Refs. [11±13]

for circular ducts, it is easily veri®ed that an equivalent
mathematical representation of Eqs. (7)±(10) is given
by

@ 2T1

@y2
� u

a
@T1

@x
, �11�

T1�0,y� � 0, k
@T1

@y

����
y�0
� ÿq0 f1�x� ÿ f0,

k
@T1

@y

����
y�Ly

� q0 f2�x� � f0,

�12�

@ 2T2

@z2
� u

a
@T2

@x
, �13�

T2�0,z� � 0, k
@T2

@z

����
z�0
� ÿq0 f3�x� ÿ f0,

k
@T2

@z

����
z�Lz

� q0 f4�x� � f0:

�14�

Indeed, Eqs. (11)±(14) reveal that T1�x,y� and T2�x,z�
can be expressed as

T1�x,y� � q0Ly

k

�
h2

� xa
uL2

y

,
y

Ly

�
� h1

� xa
uL2

y

,1ÿ y

Ly

��
,

�15�

T2�x,z� � q0Lz

k

�
h4

�
xa
uL2

z

,
z

Lz

�
� h3

�
xa
uL2

z

,1ÿ z

Lz

��
,

�16�

where, for every j � 1, 2, 3, 4, function hj�t,o� is
de®ned as the solution of the di�erential problem

@ 2hj
@o2
� @hj
@ t

, �17�

hj�0,o� � 0,
@hj
@o

����
o�0
� 0,

@hj
@o

����
o�1
� wj�t� � Br: �18�

In Eq. (18), functions wj�t� are given by wj�t� � fj�ajt�
for every j � 1, 2, 3, 4, where the coe�cients aj are

such that a1 � a2 � uL2
y=a and a3 � a4 � uL2

z=a.
The solution of Eqs. (17) and (18) can be easily

obtained by the Laplace transform method [14]. The

transform of hj�t,o� is given by

~hj�s,o� �
�1
0

eÿsthj�t,o� dt: �19�

On account of the properties of Laplace transforms
[14], Eqs. (17) and (18) yield

@ 2 ~hj
@o2
� s ~hj, �20�

@ ~hj
@o

�����
o�0
� 0,

@ ~hj
@o

�����
o�1
� ~wj�s� � Br

s
: �21�

Eqs. (20) and (21) are easily solved, so that one
obtains

~hj�s,o� � cosh
ÿ ��

s
p

o
�

s
��
s
p

sinh
ÿ ��

s
p ��s ~wj�s� � Br

�
: �22�

On account of the convolution theorem for Laplace
transforms [14], Eq. (22) yields

hj�t,o� � BrH�t,o� �
�t
0

dwj�t 0 �
dt 0

H
ÿ
tÿ t 0,o

�
dt 0, �23�

where H�t,o� is de®ned as

H�t,o� �Lÿ1
(

cosh
ÿ ��

s
p

o
�

s
��
s
p

sinh
ÿ ��

s
p � ): �24�

As is shown in the Appendix, the inverse Laplace
transform which appears in the right-hand side of Eq.
(24) is easily evaluated and H�t,o� can be expressed as

H�t,o� � t� o2

2
ÿ 1

6

ÿ 2

p2
X1
n�1

� ÿ 1�n
n2

exp� ÿ n2p2t� cos�npo�: �25�

Therefore, on account of Eqs. (15), (16) and (23), the
functions T1�x,y� and T2�x,z� can be expressed as
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T1�x,y� � q0Ly

k

(
Br
�
H
� xa
uL2

y

,
y

Ly

�

�H
� xa
uL2

y

,1ÿ y

Ly

��

�
�x
0

df2�x 0 �
dx 0

H
� a
uL2

y

�xÿ x 0 �, y
Ly

�
dx 0

�
�x
0

df1�x 0 �
dx 0

H
� a
uL2

y

�xÿ x 0 �,1ÿ y

Ly

�
dx 0

)
,

�26�

T2�x,z� � q0Lz

k

(
Br

�
H

�
xa
uL2

z

,
z

Lz

�

�H

�
xa
uL2

z

,1ÿ z

Lz

��

�
�x
0

df4�x 0 �
dx 0

H

� a
uL2

z

�xÿ x 0 �, z
Lz

�
dx 0

�
�x
0

df3�x 0 �
dx 0

H

� a
uL2

z

�xÿ x 0 �,1ÿ z

Lz

�
dx 0

)
,

�27�

By de®ning the dimensionless quantities

x � x

DhPe
, Z � y

Ly
, z � z

Ly
, y � k

Tÿ T0

q0Dh

,

y1 � k
T1

q0Dh

, y2 � k
T2

q0Dh

, Pe � uDh

a
,

b � Lz

Ly
, g � 2b

1� b
,

�28�

Eqs. (6), (26) and (27) can be rewritten as

y�x,Z,z� � y1�x,Z� � y2�x,z�, �29�

y1�x,Z� � Br

g

�
H
ÿ
xg2,Z

�
�H

ÿ
xg2,1ÿ Z

��
� 1

g

�x
0

dg1
ÿ
x 0
�

dx 0
H
ÿ
g2
ÿ
xÿ x 0

�
,1ÿ Z

�
dx 0

� 1

g

�x
0

dg2
ÿ
x 0
�

dx 0
H
ÿ
g2
ÿ
xÿ x 0

�
,Z
�

dx 0,

�30�

y2�x,z� � Brb
g

"
H

 
xg2

b2
,
z
b

!
�H

 
xg2

b2
,1ÿ z

b

!#

� b
g

�x
0

dg3
ÿ
x 0
�

dx 0
H

 
g2

b2
ÿ
xÿ x 0

�
,1ÿ z

b

!
dx 0

� b
g

�x
0

dg4
ÿ
x 0
�

dx 0
H

 
g2

b2
ÿ
xÿ x 0

�
,
z
b

!
dx 0,

�31�

where gj�x� � fj�PeDhx�, for every j � 1, 2, 3, 4.

3. Bulk temperature and Nusselt number

In this section, expressions of the bulk temperature
and of the local Nusselt number are obtained.

For slug ¯ow, the bulk value of an arbitrary func-
tion K(x,y,z ) is given by

Kb�x� � 1

LyLz

�Lz

0

�Ly

0

K�x,y,z� dy dz: �32�

On account of Eqs. (6) and (32), the bulk temperature

can be expressed as

Tb�x� � T0 � T1b�x� � T2b�x�: �33�
Moreover, as a consequence of Eqs. (12), (14) and
(32), if one integrates both sides of Eq. (11) with

respect to y in the interval [0, Ly� and if one integrates
both sides of Eq. (13) with respect to z in the interval
[0, Lz], one is led to the following expressions:

T1b�x� � 2af0

kuLy
x� aq0

kuLy

�x
0

�
f1�x 0 � � f2�x 0 �

�
dx 0, �34�

T2b�x� � 2af0

kuLz
x� aq0

kuLz

�x
0

�
f3�x 0 � � f4�x 0 �

�
dx 0, �35�

Eqs. (34) and (35) can be written in a dimensionless
form by employing Eq. (28), namely

y1b�x� � 2gBrx� g
�x
0

�
g1
ÿ
x 0
�
� g2

ÿ
x 0
��

dx 0, �36�

y2b�x� � 2gBr
b

x� g
b

�x
0

�
g3
ÿ
x 0
�
� g4

ÿ
x 0
��

dx 0: �37�

The peripherally uniform and axially local Nusselt
number Nu is de®ned as [1,15]

Nu � Dh

k

qw,m�x�
Tw,m�x� ÿ Tb�x� , �38�

where qw,m�x� is the peripherally averaged wall heat
¯ux, which, on account of Eqs. (4) and (5), is
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expressed as

qw,m�x� �
q0Lz

�
f1�x� � f2�x�

�� q0Ly

�
f3�x� � f4�x�

�
2
ÿ
Ly � Lz

� ,

�39�

while Tw,m�x� is the peripherally averaged wall tem-
perature given by

Tw,m�x� � 1

2
ÿ
Ly � Lz

�( �Ly

0

�
T�x,y,0� � T�x,y,Lz �

�
dy

�
�Lz

0

�
T�x,0,z� � T

ÿ
x,Ly,z

��
dz

)
: �40�

By employing Eqs. (6) and (33), Eq. (40) can be rewrit-
ten as

Tw,m�x� � T0 � Ly

2
ÿ
Ly � Lz

��2T1b�x� � T2�x,0�

� T2�x,Lz �
�� Lz

2
ÿ
Ly � Lz

��2T2b�x�

� T1�x,0� � T1

ÿ
x,Ly

��
: �41�

Then, Eq. (41) can be expressed in terms of the dimen-
sionless quantities de®ned in Eq. (28) as follows:

yw,m�x� � g
4b

�
2y1b�x� � y2�x,0� � y2�x,b�

�
� g

4

�
2y2b�x� � y1�x,0� � y1�x,1�

�
: �42�

Moreover, Eqs. (28), (38) and (39) yield

Nu � b
�
g1�x� � g2�x�

�� g3�x� � g4�x�
2�1� b��yw,m�x� ÿ yb�x�

� : �43�

Eqs. (30), (31), (36), (37) and (42) allow one to evalu-
ate the axial distribution of Nu for every choice of the
functions g1�x�, g2�x�, g3�x� and g4�x�.

4. Uniform heat ¯uxes on the duct walls

In this section, the expressions of dimensionless tem-
perature and of the local Nusselt number obtained in
Sections 2 and 3 are employed in the case of uniform

heat ¯uxes on the four duct walls.
Let us assume that the functions g1�x�, g2�x�, g3�x�

and g4�x� are given by

g1�x� � b1U�x�, g2�x� � b2U�x�,

g3�x� � b3U�x�, g4�x� � b4U�x�,
�44�

where b1, b2, b3 and b4 are arbitrary real numbers.
On account of Eq. (44), Eqs. (30) and (31) yield

y1�x,Z� � Br� b2
g

H
ÿ
xg2,Z

�
� Br� b1

g
H
ÿ
xg2,1ÿ Z

�
,

�45�

y2�x,z� � �Br� b4 �b
g

H

 
xg2

b2
,
z
b

!

� �Br� b3 �b
g

H

 
xg2

b2
,1ÿ z

b

!
, �46�

while Eqs. (36) and (37) can be rewritten as

y1b�x� � g�2Br� b1 � b2 �x,

y2b�x� � g
b
�2Br� b3 � b4 �x: �47�

As a consequence of Eqs. (43) and (44), for x > 0, the
local Nusselt number is given by

Nu � b�b1 � b2 � � b3 � b4

2�1� b��yw,m�x� ÿ yb�x�
� : �48�

Eqs. (25), (42) and (47), imply that the di�erence

yw,m�x� ÿ yb�x� can be expressed as

yw,m�x� ÿ yb�x� � 1

24
�4Br� b1 � b2 � b3 � b4 �

ÿ 2Br� b1 � b2
4p2

X1
n�1

1

n2
exp

ÿ
ÿ 4n2p2g2x

�
ÿ 2Br� b3 � b4

4p2
X1
n�1

1

n2
exp

 
ÿ 4n2p2

g2

b2
x

!
: �49�

Therefore, Eqs. (48) and (49) predict that a fully devel-
oped value of the local Nusselt number is reached in
the limit x41. The fully developed value is given by

Nu1 �
12
�
b�b1 � b2 � � b3 � b4

�
�1� b��4Br� b1 � b2 � b3 � b4 � : �50�

The eight boundary conditions examined by Gao and
Hartnett [6] and denoted by 4, 3L, 3S, 2L, 2S, 2C, 1L

and 1S are special cases of Eq. (44). The values of b1,
b2, b3 and b4 which de®ne these eight cases are
reported in Table 1. By employing Eq. (50) and the

Gao±Hartnett boundary conditions, the fully devel-
oped Nusselt numbers for the cases 4, 3L, 3S, 2L, 2S,
2C, 1L and 1S are easily obtained and are reported in
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Table 2. On account of Table 2, one can conclude that

the fully developed values of Nu for Br � 0 are di�er-
ent from those obtained in Ref. [6], except in the cases

4, 2L and 2S. The reason relies in the di�erent de®-
nitions of Nu adopted in the present paper and in the

paper by Gao and Hartnett [6]. The de®nition of Nu

employed in Ref. [6] is similar but not coincident with
the de®nition of axially local Nusselt number adopted

in the present paper and expressed by Eq. (38). Indeed,
Gao and Hartnett [6] consider the quantities qw,m�x�
and Tw,m�x� as average values on the non-adiabatic
walls and not on the whole periphery. For instance,

according to Gao±Hartnett's de®nition, qw,m�x� co-
incides with q0 in all the eight cases 4, 3L, 3S, 2L, 2S,

2C, 1L and 1S. Therefore, the Nusselt number de®ned
by Eq. (38) is equal to that de®ned in Ref. [6] when all
the duct walls are heated, as in case 4.

Table 2 reveals that Nu1 depends on b and on Br,
except in the cases 4 and 2C where Nu1 depends only
on Br. This table shows that, for a given boundary

condition and for a given aspect ratio, the e�ect of vis-
cous dissipation tends to lower the value of Nu1 if the
¯uid is heated �Br > 0), while it increases Nu1 if the

¯uid is cooled �Br < 0). This behavior has been already
pointed out with reference to circular ducts with a pre-
scribed heat ¯ux [11,12]. In the limit b40, the rec-
tangular duct becomes a parallel-plate channel either

with a prescribed uniform heat ¯ux on both walls (4,
3L, 2L), or with an adiabatic wall and with a pre-
scribed uniform heat ¯ux on the other wall (3S, 2C,

1L), or with two adiabatic walls (2S, 1S). In this limit,
Nu1 tends to zero both in case 2S and in case 1S. On
the contrary, in the three cases 4, 3L, 2L, three di�er-

ent limits of Nu1 are found for b40. Moreover, also
in the three cases 3S, 2C, 1L, three di�erent limits of
Nu1 are found for b40. This unexpected feature of

the limit for b40 is present also in the expressions of
Nu1 found by Gao and Hartnett [6], as it has been
pointed out by Spiga and Morini [9]. Indeed, the limit
for b40 of the expressions of Nu1 reported in Table

2 is not legitimate for the following reason. The ex-
pression of Nu1 given by Eq. (50) has been obtained
by considering the in®nite sums present in Eq. (49) as

negligible in the limit x41. However, if one lets
b40 in Eq. (49) the ®rst in®nite sum becomes inde-
pendent of x and, as is easily veri®ed, equals p2=6.
Therefore, if b40, the fully developed expression of
yw,m ÿ yb is not �4Br� b1 � b2 � b3 � b4�=24, but
�2Br� b3 � b4�=24. As a consequence, the limit for
b40 of the right-hand side of Eq. (50) is physically

meaningless and the correct Nu1 for a parallel-plate
channel is given by

Nu1 � 12�b3 � b4 �
2Br� b3 � b4

: �51�

Obviously, the right-hand side of Eq. (51) is indepen-
dent of the values of b1 and b2.

The dimensionless thermal entrance length L�th is
de®ned as the value of x required to achieve a local
Nusselt number Nu equal to 1:05Nu1 [1]. As a conse-

quence, the behavior of L�th is easily investigated by
evaluating the ratio RNu � Nu=Nu1. On account of
Eqs. (48)±(50), 1=RNu can be expressed as

Table 1

Values of b1, b2, b3 and b4 for the boundary conditions 4, 3L,

3S, 2L, 2S, 2C, 1L and 1S

b1 b2 b3 b4

4 1 1 1 1

3L 1 0 1 1

3S 1 1 1 0

2L 0 0 1 1

2S 1 1 0 0

2C 1 0 0 1

1L 0 0 0 1

1S 1 0 0 0

Table 2

Values of Nu1 for the boundary conditions 4, 3L, 3S, 2L, 2S,

2C, 1L and 1S

Nu1

4
6

Br� 1

3L
12�2� b�

�1� b��4Br� 3�

3S
12�1� 2b�

�1� b��4Br� 3�

2L
12

�1� b��2Br� 1�

2S
12b

�1� b��2Br� 1�

2C
6

2Br� 1

1L
12

�1� b��4Br� 1�

1S
12b

�1� b��4Br� 1�
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1

RNu
� 1ÿ 2Br� b1 � b2

4Br� b1 � b2 � b3 � b4
f
ÿ
g2x

�
ÿ 2Br� b3 � b4

4Br� b1 � b2 � b3 � b4
f

 
g2

b2
x

!
, �52�

where function f is de®ned as

f�o� � 6

p2
X1
n�1

exp� ÿ 4p2n2o�
n2

: �53�

On account of Eqs. (48), (49) and (51), in the limit
b40,1=RNu is given by

1

RNu
� 1ÿ f �4x�: �54�

The following results are easily inferred by employing
Eq. (52) and Table 1. The values of RNu and L�th in

case 4 coincide with those in case 2C and are indepen-
dent of Br. If Br41 and for every value of b, the
same values of RNu and L�th are obtained in the eight

cases 4, 3L, 3S, 2L, 2S, 2C, 1L and 1S. This is not sur-

prising since, when Br41, all the eight boundary

conditions degenerate to a single one, i.e., that of adia-

batic walls. If b � 1, RNu and L�th are independent of

Br and of the parameters b1, b2, b3 and b4. The latter

result is quite interesting and can be restated as fol-

lows. For a square duct, the same ratio Nu=Nu1 and,

as a consequence, the same dimensionless thermal

entrance length are obtained for all the eight boundary

conditions 4, 3L, 3S, 2L, 2S, 2C, 1L and 1S. This

property does not hold if Gao±Hartnett's de®nition of

local Nusselt number is employed, as is easily veri®ed

by examining the values of L�th for Br � 0 reported by

Spiga and Morini [8].

Eq. (54) shows that, in the limit b40, RNu and L�th
are independent of Br and of the parameters b1, b2, b3
and b4. Although, in this limit, the conclusion that the

parameters b1 and b2 do not in¯uence RNu and L�th is

obvious, a less obvious result is that RNu and L�th are

independent of Br, b3 and b4.

In Table 3, the values of L�th for Br � 0 are obtained

Table 3

Values of L�th for the boundary conditions 4, 3L, 3S, 2L, 2S, 2C, 1L and 1S, in the case Br � 0

b 4 3L 3S 2L 2S 2C 1L 1S

1 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645

0.9 0.0653 0.0629 0.0675 0.0582 0.0719 0.0653 0.0582 0.0719

0.8 0.0679 0.0628 0.0728 0.0523 0.0817 0.0679 0.0523 0.0817

0.7 0.0738 0.0648 0.0819 0.0466 0.0951 0.0738 0.0466 0.0951

0.6 0.0851 0.0705 0.0969 0.0413 0.1147 0.0851 0.0413 0.1147

0.5 0.1059 0.0841 0.1221 0.0363 0.1452 0.1059 0.0363 0.1452

0.4 0.1439 0.1127 0.1661 0.0316 0.1976 0.1439 0.0316 0.1976

0.3 0.2205 0.1726 0.2547 0.0273 0.3029 0.2205 0.0273 0.3029

0.2 0.4228 0.3309 0.4883 0.0232 0.5806 0.4228 0.0232 0.5806

0.1 1.4211 1.1121 1.6411 0.0195 1.9516 1.4211 0.0195 1.9516

0 0.0161 0.0161 0.0161 0.0161 ± 0.0161 0.0161 ±

Table 4

Values of L�th for the boundary condition 2L and for some values of Br

b Br � 0:1 Br � 0:2 Br � 0:4 Br � 0:6 Br � 0:8 Br � 1 Br � 2 Br � 10

1 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645

0.9 0.0594 0.0603 0.0614 0.0621 0.0626 0.0629 0.0639 0.0649

0.8 0.0549 0.0567 0.0593 0.0609 0.0620 0.0628 0.0649 0.0672

0.7 0.0509 0.0541 0.0585 0.0613 0.0633 0.0648 0.0684 0.0725

0.6 0.0475 0.0525 0.0599 0.0648 0.0681 0.0705 0.0767 0.0831

0.5 0.0448 0.0529 0.0658 0.0743 0.0800 0.0841 0.0936 0.1032

0.4 0.0432 0.0575 0.0827 0.0975 0.1066 0.1127 0.1267 0.1401

0.3 0.0437 0.0767 0.1253 0.1490 0.1632 0.1726 0.1941 0.2148

0.2 0.0529 0.1454 0.2401 0.2857 0.3128 0.3309 0.3721 0.4117

0.1 0.1597 0.4887 0.8071 0.9604 1.0515 1.1121 1.2508 1.3838

0 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161
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in the cases 4, 3L, 3S, 2L, 2S, 2C, 1L and 1S. The

values of L�th reported in this table for b40 are all co-

incident except in the cases 1S and 2S where, in the

absence of viscous dissipation, Nu is unde®ned. As

expected, the columns which refer to cases 4 and 2C

coincide. Also the columns which refer to cases 2L and

1L are coincident, as well as those for the cases 2S and

1S. The dependence of L�th on b is di�erent in the eight

cases. More precisely, for the cases 4, 3S, 2S, 2C and

1S, L�th is a monotonically decreasing function of b.
For the cases 2L and 1L, L�th is a monotonically

increasing function of b. Finally, in the case 3L, L�th
has a non-monotonic dependence on b in the range

0:7 < b < 1. As it has been already pointed out, Gao±

Hartnett's de®nition of local Nusselt number [6] also

adopted by Spiga and Morini [8] agrees with Eq. (38)

in the case 4. However, even in this case, the values of

L�th reported in Table 3 are not in good agreement with

those obtained by Spiga and Morini [8], the discrepan-

cies being of about 10%. In the authors' opinion, these

discrepancies should be caused by a lower accuracy in

the numerical evaluation of L�th performed in Ref. [8].

As is easily inferred from Table 3, with the exception

of the cases 2L and 1L, the limit b40 of L�th evaluated

by Eq. (52) is ill-de®ned. Indeed, the value of L�th for

b � 0 reported in Table 3 is obtained by employing

Eq. (54).

In Table 4, values of L�th in the case 2L are reported

for some values of b and Br. This table shows that, for

a ®xed value of b, L�th is a monotonic increasing func-

tion of Br, with the exception of the cases b � 1 and

b � 0 where L�th is independent of Br. On the other

hand, the dependence of L�th on b is non-monotonic.

The values reported in Table 4 reveal, for a ®xed Br,

the existence of an aspect ratio which yields a mini-

mum L�th. This aspect ratio increases with Br and

approaches b � 1 for Br41. The values of L�th in the

limiting case of adiabatic walls �Br41� are not

reported in Table 4 since, as is easily inferred from Eq.

(52), these values coincide with those for the case 4,

already reported in Table 3. On account of the values

reported in Table 4, one can conclude that the e�ect of

viscous dissipation on L�th is more and more apparent

as b decreases from 1 to 0.1. Moreover, it should be

pointed out that Table 4 reveals a behavior in the limit

b40 di�erent from that in the case Br � 0. More pre-

cisely, in the latter case, the limit for b40 of L�th for

the boundary condition 2L is well de®ned, as is shown

in Table 3. On the contrary, this limit is ill-de®ned for

Br 6� 0, as it can be inferred from Eq. (52). A compari-

son between Tables 3 and 4 shows that the column for

the case 3L in Table 3 coincides with the column for

Br � 1 in Table 4. This is not surprising since, as it is

easily proved by employing Eq. (52), RNu evaluated for

Br � 0 and the boundary condition 3L coincides with

RNu evaluated for Br � 1 and the boundary condition

2L.

The behavior of RNu in the thermal entrance region

is represented in Figs. 2 and 3. As it has been pointed

out above, the boundary conditions 4 and 2C yield the

same RNu, which is independent of Br. Fig. 2 refers to

the boundary conditions 4 and 2C. In this ®gure, plots

of RNu versus x are reported for b � 1, b � 0:2 and

b � 0:1. In agreement with the values of the dimen-

sionless thermal entrance length given in Table 3, Fig.

2 reveals that the dependence of RNu on b is stronger

for low values of the aspect ratio and that L�th under-

goes a rapid increase for small b. Fig. 3 refers to the

Fig. 2. Plots of RNu vs. x for the boundary condition 4 or 2C. The plots refer to three di�erent values of b and to any value of Br.
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aspect ratio b � 0:5 and displays a comparison

between the behavior of RNu in the case 2L and in the

case 1L. In each case, plots are reported for di�erent

values of Br. The di�erence between the cases 2L and

1L is more apparent for Br < 0. In fact, as it has been

pointed above, for Br � 0, the boundary conditions 2L

and 1L yield the same values of RNu. Moreover, the

e�ect of viscous dissipation is more important for

Br < 0 since, as is easily checked by employing Table

2, Nu1 is singular for Br � ÿ1=2 in the case 2L, while

it is singular for Br � ÿ1=4 in the case 1L. When Nu1
is singular, RNu is identically vanishing for every value

of x.
Fig. 4 refers to b � 1, Br � 1 and to the boundary

condition 4. In this ®gure, plots of the distributions of

Dy � yÿ yb at di�erent duct sections which correspond

to x � 0:001, x � 0:005, x � 0:02 and x � 0:1 are

reported. Fig. 4 is a representation of the thermal
boundary layer development. For x � 0:001, the ¯uid
is almost isothermal and a steep temperature change
occurs in the neighborhood of the duct walls. For

higher values of x, the temperature gradient at the
duct walls becomes smaller. For x � 0:1, Dy has almost
reached its fully developed distribution. Fig. 4 shows

that, at each channel section, the highest values of y
occur at the four edges of the duct.

5. Exponential axial change of the wall heat ¯ux

In this section, the case of a peripherally uniform
wall heat ¯ux which undergoes an exponential axial

Fig. 3. Plots of RNu vs. x for the boundary condition 2L and for the boundary condition 1L. The plots refer to b � 0:5 and to

di�erent values of Br.
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change is analyzed by employing the expressions of the
dimensionless temperature and of the local Nusselt

number obtained in Sections 2 and 3.
Let us assume that the functions g1�x�, g2�x�, g3�x�

and g4�x� are given by

g1�x� � g2�x� � g3�x� � g4�x� � U�x�e2ax, �55�

where a is an arbitrary real number.
On account of Eq. (55), Eqs. (30) and (31) yield

y1�x,Z� � Br� 1

g

�
H
ÿ
xg2,Z

�
�H

ÿ
xg2,1ÿ Z

��
� 2a

g

�
M
ÿ
x,g2,Z

�
�M

ÿ
x,g2,1ÿ Z

��
, �56�

y2�x,z� �
�Br� 1�b

g

"
H

 
xg2

b2
,
z
b

!

�H

 
xg2

b2
,1ÿ z

b

!#
� 2ab

g

"
M

 
x,
g2

b2
,
z
b

!

�M

 
x,
g2

b2
,1ÿ z

b

!#
, �57�

where function M�x,p,o� is de®ned as

M�x,p,o� �
�x
0

e2ax
0
H
ÿ
p
ÿ
xÿ x 0

�
,o
�

dx 0: �58�

On account of Eq. (25), Eq. (58) can be rewritten in
the form

M�x,p,o� � p

4a2

ÿ
e2ax ÿ 2axÿ 1

�
� 1ÿ 3o2

12a
�1ÿ e2ax �

ÿ 2e2ax

p2
X1
n�1

� ÿ 1�n
n2
ÿ
2a� n2p2p

�cos�npo�

� 2

p2
X1
n�1

� ÿ 1�n
n2
ÿ
2a� n2p2p

�cos�npo� exp
ÿ
ÿ n2p2px

�
:

�59�

By employing the Fourier series method [16], it is
easily veri®ed that the identities

X1
n�1

� ÿ 1�n
2a� n2p2p

cos�npo�

� cosh
ÿ
o

����������
2a=p
p �

2
��������
2ap
p

sinh
ÿ ����������

2a=p
p � ÿ 1

4a
, �60�

X1
n�1

� ÿ 1�n
n2

cos�npo� � p2

12
�3o2 ÿ 1�, �61�

Fig. 4. Plots of Dy � yÿ yb for the boundary condition 4 with b � 1 and Br � 1. The plots refer to di�erent values of x.
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hold. As a consequence of Eqs. (60) and (61), one
obtains

X1
n�1

� ÿ 1�n
n2
ÿ
2a� n2p2p

�cos�npo�

� 1

2a

X1
n�1

� ÿ 1�n
n2

cos�npo�

ÿ p2p
2a

X1
n�1

� ÿ 1�n
2a� n2p2p

cos�npo�

� p2p
8a2
� p2

24a
�3o2 ÿ 1� ÿ p2

4a

������
p

2a

r
cosh

ÿ
o

����������
2a=p
p �

sinh
ÿ ����������

2a=p
p � :

�62�

By employing Eq. (62), Eq. (59) can be rewritten as

M�x,p,o� � ÿ p

4a2
�2ax� 1� � 1ÿ 3o2

12a

� 1

2a

������
p

2a

r
cosh

ÿ
o

����������
2a=p
p �

sinh
ÿ ����������

2a=p
p � e2ax

� 2

p2
X1
n�1

� ÿ 1�n
n2
ÿ
2a� n2p2p

�cos�npo� exp
ÿ
ÿ n2p2px

�
:

�63�

On account of Eq. (55), Eqs. (36) and (37) yield

y1b�x� � 2gBrx� g
a
�e2ax ÿ 1�,

y2b�x� � 2
g
b
Brx� g

ba
�e2ax ÿ 1�: �64�

As a consequence of Eqs. (43) and (55), for x > 0, the
local Nusselt number is given by

Nu � e2ax

yw,m�x� ÿ yb�x� : �65�

Eqs. (25), (42), (56), (57), (63) and (64) imply that the
di�erence yw,m�x� ÿ yb�x� can be expressed as

yw,m�x� ÿ yb�x� � Br

6

� e2ax

"
g

2b
�����
2a
p coth

 
b

�����
2a
p

2g

!

� g

2
�����
2a
p coth

 �����
2a
p

2g

!
ÿ 2

ÿ
b2 � 1

�
a�b� 1�2

#

ÿ 1

2p2
X1
n�1

�Br� 1�
ÿ
a� 2n2p2g2

�
ÿ a

n2
ÿ
a� 2n2p2g2

�
� exp

ÿ
ÿ 4n2p2g2x

�
ÿ 1

2p2
X1
n�1

�Br� 1�
ÿ
a� 2n2p2g2=b2

�
ÿ a

n2
ÿ
a� 2n2p2g2=b2

�
� exp

 
ÿ 4n2p2

g2

b2
x

!
: �66�

If a > 0, Eqs. (65) and (66) predict the existence of a
fully developed Nusselt number in the limit x41.
The fully developed value Nu1 is given by

Nu1 �

1

g

2b
�����
2a
p coth

 
b

�����
2a
p

2g

!
� g

2
�����
2a
p coth

 �����
2a
p

2g

!
ÿ 2

ÿ
b2 � 1

�
a�b� 1�2

:

�67�

As expected, for a > 0, the fully developed value of Nu
is independent of Br. Indeed, an exponential axial

increase of the wall heat ¯ux implies that, su�ciently
far from the inlet section, the e�ect of viscous dissi-
pation becomes negligible, whatever the value of Br

may be. On account of Eqs. (65) and (66), for a < 0
and for any non-vanishing value of Br, the limit x41
of Nu is zero. On the other hand, Eqs. (65) and (66)

imply that, for Br � 0, the limit x41 of Nu is zero
only if a < ÿ2p2g2, while, if ÿ2p2g2 < a < 0, a fully
developed value of Nu is reached and can be expressed
as

Nu1 �
1

2
ÿ
b2 � 1

�
jaj�b� 1�2 ÿ

g
2b

��������
2jajp cot

 
b

��������
2jajp
2g

!
ÿ g

2
��������
2jajp cot

 ��������
2jajp
2g

! :

Obviously, the fully developed values of Nu evaluated
by Eq. (68) have no physical interest. In fact, in some

cases, the Brinkman number can be very small and
even exceptionally small, but in no case it can be
exactly zero. As a consequence, one can conclude that,

in every practical case with a < 0, the limit x41 of
Nu is zero. It should be pointed out that the behavior
of Nu in the fully developed region for exponential
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wall heat ¯ux is analogous to that analyzed in the case
of circular ducts [12].
It is easily veri®ed that, in the limit b40, i.e., for a

plane parallel channel, Eq. (66) yields

yw,m�x� ÿ yb�x� � Br

12

� e2ax

"
1�����
2a
p coth

 
1

2

����
a

2

r !
ÿ 2

a

#

ÿ 1

2p2
X1
n�1

�Br� 1�
ÿ
a� 8n2p2

�
ÿ a

n2�a� 8n2p2 � exp
ÿ
ÿ 16n2p2x

�
:

�69�

As a consequence of Eqs. (65) and (69), if a > 0 and

b40, the fully developed value of Nu is given by

Nu1 � a
�����
2a
p

a coth

 
1

2

����
a

2

r !
ÿ 2

�����
2a
p : �70�

The right-hand side of Eq. (70) can be also obtained
by taking the limit b40 of the right-hand side of Eq.
(67). Obviously, if a < 0 and Br 6� 0, Eqs. (65) and

(69) imply that the limit x41 of Nu is zero.
In Table 5, values of Nu1 for di�erent aspect ratios

and for di�erent values of a are compared with the

values of Nu1 evaluated in Ref. [11] in the case of
slug-¯ow forced convection in a circular duct with an
exponentially varying wall heat ¯ux. The comparison

reveals that, for any ®xed a, the value of Nu1 for a

circular duct lies between the value for a square duct

�b � 1� and the value for a parallel plate channel

�b40). Moreover, the discrepancies between the value

of Nu1 for a square duct, the value for a parallel plate

channel and the value for a circular duct tend to

become negligible as a increases. In Table 5, the values

of Nu1 in the limit b40 are evaluated by employing

Eq. (70), while the values in the limit a40 are

obtained by evaluating the limit either of the right-

hand side of Eq. (67) or of the right-hand side of Eq.

(70). It can be pointed out that, for a ®xed a > 0, the

value of Nu1 is a decreasing function of b and that,

for a ®xed b, the value of Nu1 is an increasing func-

tion of a.

In Fig. 5, plots of RNu versus x are reported for

b � 1, a � 10 and for di�erent values of Br. This ®gure

shows that, for positive values of Br, RNu initially

decreases in the thermal entrance region, reaches a

minimum and increases to its asymptotic value 1. The

behavior for Br � 0, Br � ÿ0:5 and Br � ÿ1 is di�er-

ent, since RNu is a monotonic decreasing function of x
which tends asymptotically to 1. Finally, the plot for

Br � ÿ10 displays a singularity of RNu for x � 0:1278.
This singularity occurs because, for Br � ÿ10, a � 10

and x � 0:1278, the dimensionless wall temperature

yw,m coincides with the dimensionless bulk temperature

yb. Indeed, an analysis of the data for a � 10 and b �
1 reveals that, for every value of Br such that Br < ÿ1,
there exists a value of x greater than zero which yields

a singularity of RNu and, hence, of Nu. However, this

Table 5

Values of Nu1 for an exponentially varying wall heat ¯ux

a b � 1 b � 0:8 b � 0:6 b � 0:4 b � 0:2 b � 0:1 b40 Circular duct [11]

0 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 12.000 8.0000

1 6.1972 6.2041 6.2349 6.3329 6.7530 7.6739 12.100 8.1650

10 7.7655 7.8004 7.9477 8.3412 9.3898 10.564 12.966 9.5176

20 9.2012 9.2417 9.4094 9.8364 10.875 11.934 13.871 10.809

30 10.430 10.470 10.637 11.054 12.043 13.019 14.724 11.945

40 11.516 11.556 11.716 12.119 13.061 13.974 15.531 12.967

50 12.499 12.536 12.692 13.079 13.981 14.846 16.298 13.902

60 13.401 13.437 13.588 13.963 14.831 15.658 17.030 14.768

70 14.239 14.274 14.421 14.785 15.626 16.421 17.730 15.577

80 15.025 15.059 15.202 15.558 16.375 17.145 18.402 16.340

90 15.767 15.801 15.941 16.289 17.086 17.835 19.049 17.062

100 16.472 16.505 16.643 16.984 17.765 18.494 19.673 17.751

500 33.758 33.786 33.901 34.182 34.802 35.356 36.202 34.875

1000 46.815 46.842 46.952 47.221 47.810 48.330 49.114 47.897

5000 102.04 102.07 102.17 102.43 102.97 103.45 104.17 103.08

10,000 143.45 143.48 143.58 143.83 144.37 144.84 145.54 144.48

50,000 318.24 318.27 318.37 318.61 319.14 319.60 320.28 319.25

100,000 449.22 449.25 449.35 449.59 450.12 450.58 451.25 450.23
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value of x is a decreasing function of Br in the range

Br < ÿ1 and tends to zero in the limit Br4 ÿ 1. A
quite similar behavior has been observed also in the
thermal entrance region of circular ducts for slug-¯ow
forced convection with an exponentially varying wall

heat ¯ux [12].

6. Conclusions

The stationary forced convection in a rectangular

duct with prescribed heat ¯uxes on the four walls has
been investigated in the case of slug ¯ow, by taking
into account the e�ect of viscous dissipation. An ana-

lytical solution of the energy balance equation has

been found for arbitrary axially varying heat ¯uxes

prescribed on the four duct walls. The solution has

been obtained by employing a superposition method

and the Laplace transform technique. Detailed ana-

lyses have been performed both for the eight boundary

conditions 4, 3L, 3S, 2L, 2S, 2C, 1L and 1S proposed

by Gao and Hartnett [6] and for a peripherally uni-

form wall heat ¯ux which undergoes an exponential

axial variation.

The most important results obtained in the preced-

ing sections are the following. The Brinkman number

a�ects the ratio RNu � Nu=Nu1 and, as a consequence,

the value of the dimensionless thermal entrance length

Fig. 5. Plots of RNu vs. x for an exponentially varying wall heat ¯ux with a � 10. The plots refer to b � 1 (square duct) and to

di�erent values of Br.
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in the cases 3L, 3S, 2L, 2S, 1L and 1S, but not in the
cases 4 and 2C. For a square duct �b � 1), at every

dimensionless axial position x, the ratio RNu is the
same for all the eight Gao±Hartnett's boundary con-
ditions and is independent of the Brinkman number,

Br. Moreover, a non-vanishing value of Br implies
that, in the limit b40, Nu1 and L�th for a rectangular
duct do not coincide with those for a plane parallel

channel, even for the boundary conditions 2L and 1L.
In the case of a peripherally uniform wall heat ¯ux
which undergoes an exponential axial variation, it has

been shown that, for positive values of the parameter
a, the fully developed Nusselt number is independent
of Br. However, if a > 0 and Br < ÿ1, in the thermal
entrance region there exists an axial position where the

local Nusselt number becomes singular. The e�ect of
viscous dissipation may be very important for expo-
nentially decreasing wall heat ¯uxes �a < 0). In this

case, for any non-vanishing value of Br, the local
Nusselt number tends to zero in the limit x41.

Appendix

Let us evaluate the inverse Laplace transform which
appears at the right-hand side of Eq. (24). Function
~H�s,o� has no branch points, has a double pole for s �
0 and has an in®nite sequence of simple poles for
s � sn, where, for every positive integer n, sn � ÿn2p2.
The classical procedure for the inversion of Laplace
transforms consists of the following steps (see Ref. [14]
for details). The Laplace inversion integral is expressed
as a contour integral in the complex plane along the

Bromwich contour closed by an arc of circle. Then, the
integral is evaluated by using the Cauchy residue theo-
rem. By means of this procedure, one obtains
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The residue at s � 0 is given by
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while, for every nr1, the residue in s � sn can be
expressed as
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Eqs. (A1)±(A3) yield Eq. (25).
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